- About MogDB
- Quick Start
- MogDB Playground
- Container-based MogDB Installation
- Installation on a Single Node
- MogDB Access
- Use CLI to Access MogDB
- Use GUI to Access MogDB
- Use Middleware to Access MogDB
- Use Programming Language to Access MogDB
- Using Sample Dataset Mogila
- Characteristic Description
- Overview
- High Performance
- CBO Optimizer
- LLVM
- Vectorized Engine
- Hybrid Row-Column Store
- Adaptive Compression
- SQL by pass
- Kunpeng NUMA Architecture Optimization
- High Concurrency of Thread Pools
- SMP for Parallel Execution
- Xlog no Lock Flush
- Parallel Page-based Redo For Ustore
- Row-Store Execution to Vectorized Execution
- Astore Row Level Compression
- BTree Index Compression
- Tracing SQL Function
- Parallel Index Scan
- Enhancement of Tracing Backend Key Thread
- Ordering Operator Optimization
- High Availability (HA)
- Primary/Standby
- Logical Replication
- Logical Backup
- Physical Backup
- Automatic Job Retry upon Failure
- Ultimate RTO
- High Availability Based on the Paxos Protocol
- Cascaded Standby Server
- Delayed Replay
- Adding or Deleting a Standby Server
- Delaying Entering the Maximum Availability Mode
- Parallel Logical Decoding
- DCF
- CM(Cluster Manager)
- Global SysCache
- Using a Standby Node to Build a Standby Node
- Two City and Three Center DR
- CM Cluster Management Component Supporting Two Node Deployment
- Maintainability
- Database Security
- Access Control Model
- Separation of Control and Access Permissions
- Database Encryption Authentication
- Data Encryption and Storage
- Database Audit
- Network Communication Security
- Resource Label
- Unified Audit
- Dynamic Data Anonymization
- Row-Level Access Control
- Password Strength Verification
- Equality Query in a Fully-encrypted Database
- Ledger Database Mechanism
- Transparent Data Encryption
- Enterprise-Level Features
- Support for Functions and Stored Procedures
- SQL Hints
- Full-Text Indexing
- Copy Interface for Error Tolerance
- Partitioning
- Support for Advanced Analysis Functions
- Materialized View
- HyperLogLog
- Creating an Index Online
- Autonomous Transaction
- Global Temporary Table
- Pseudocolumn ROWNUM
- Stored Procedure Debugging
- JDBC Client Load Balancing and Read/Write Isolation
- In-place Update Storage Engine
- Publication-Subscription
- Foreign Key Lock Enhancement
- Data Compression in OLTP Scenarios
- Transaction Async Submit
- Index Creation Parallel Control
- Dynamic Partition Pruning
- COPY Import Optimization
- SQL Running Status Observation
- BRIN Index
- BLOOM Index
- Application Development Interfaces
- AI Capabilities
- AI4DB: Autonomous Database O&M
- DB4AI: Database-driven AI
- AI in DB
- ABO Optimizer
- Middleware
- Installation Guide
- Installation Preparation
- Container Installation
- PTK-based Installation
- OM-based Installation
- Manual Installation
- Recommended Parameter Settings
- Administrator Guide
- Localization
- Routine Maintenance
- Starting and Stopping MogDB
- Using the gsql Client for Connection
- Routine Maintenance
- Checking OS Parameters
- Checking MogDB Health Status
- Checking Database Performance
- Checking and Deleting Logs
- Checking Time Consistency
- Checking The Number of Application Connections
- Routinely Maintaining Tables
- Routinely Recreating an Index
- Exporting and Viewing the WDR
- Data Security Maintenance Suggestions
- Slow SQL Diagnosis
- Log Reference
- Primary and Standby Management
- MOT Engine
- Introducing MOT
- Using MOT
- Concepts of MOT
- Appendix
- Column-store Tables Management
- Backup and Restoration
- Two City and Three Center DR
- Importing and Exporting Data
- Importing Data
- Exporting Data
- Upgrade Guide
- AI Features Guide
- AI Features Overview
- AI4DB: Autonomous Database O&M
- DBMind Mode
- Components that Support DBMind
- AI Sub-functions of the DBMind
- X-Tuner: Parameter Tuning and Diagnosis
- Index-advisor: Index Recommendation
- Slow Query Diagnosis: Root Cause Analysis for Slow SQL Statements
- Forecast: Trend Prediction
- SQLdiag: Slow SQL Discovery
- SQL Rewriter
- Anomaly Detection
- DB4AI: Database-driven AI
- AI in DB
- Intelligence Explain: SQL Statement Query Time Prediction
- ABO Optimizer
- Intelligent Cardinality Estimation
- Adaptive Plan Selection
- Security Guide
- Developer Guide
- Application Development Guide
- Development Specifications
- Development Based on JDBC
- Overview
- JDBC Package, Driver Class, and Environment Class
- Development Process
- Loading the Driver
- Connecting to a Database
- Connecting to the Database (Using SSL)
- Connecting to the Database (Using UDS)
- Running SQL Statements
- Processing Data in a Result Set
- Closing a Connection
- Managing Logs
- Example: Common Operations
- Example: Retrying SQL Queries for Applications
- Example: Importing and Exporting Data Through Local Files
- Example 2: Migrating Data from a MY Database to MogDB
- Example: Logic Replication Code
- Example: Parameters for Connecting to the Database in Different Scenarios
- JDBC API Reference
- java.sql.Connection
- java.sql.CallableStatement
- java.sql.DatabaseMetaData
- java.sql.Driver
- java.sql.PreparedStatement
- java.sql.ResultSet
- java.sql.ResultSetMetaData
- java.sql.Statement
- javax.sql.ConnectionPoolDataSource
- javax.sql.DataSource
- javax.sql.PooledConnection
- javax.naming.Context
- javax.naming.spi.InitialContextFactory
- CopyManager
- JDBC-based Common Parameter Reference
- Development Based on ODBC
- Development Based on libpq
- Dependent Header Files of libpq
- Development Process
- Example
- Link Parameters
- libpq API Reference
- Database Connection Control Functions
- Database Statement Execution Functions
- Functions for Asynchronous Command Processing
- Functions for Canceling Queries in Progress
- Psycopg-Based Development
- Commissioning
- Stored Procedure
- User Defined Functions
- PL/pgSQL-SQL Procedural Language
- Scheduled Jobs
- Autonomous Transaction
- Logical Replication
- Extension
- Materialized View
- Materialized View Overview
- Full Materialized View
- Incremental Materialized View
- Partition Management
- Partition Pruning
- Recommendations For Choosing A Partitioning Strategy
- Application Development Guide
- Performance Tuning Guide
- System Optimization
- SQL Optimization
- WDR Snapshot
- Using the Vectorized Executor for Tuning
- TPC-C Performance Tunning Guide
- Reference Guide
- System Catalogs and System Views
- Overview of System Catalogs and System Views
- System Catalogs
- GS_ASP
- GS_AUDITING_POLICY
- GS_AUDITING_POLICY_ACCESS
- GS_AUDITING_POLICY_FILTERS
- GS_AUDITING_POLICY_PRIVILEGES
- GS_CLIENT_GLOBAL_KEYS
- GS_CLIENT_GLOBAL_KEYS_ARGS
- GS_COLUMN_KEYS
- GS_COLUMN_KEYS_ARGS
- GS_DB_PRIVILEGE
- GS_ENCRYPTED_COLUMNS
- GS_ENCRYPTED_PROC
- GS_GLOBAL_CHAIN
- GS_GLOBAL_CONFIG
- GS_MASKING_POLICY
- GS_MASKING_POLICY_ACTIONS
- GS_MASKING_POLICY_FILTERS
- GS_MATVIEW
- GS_MATVIEW_DEPENDENCY
- GS_MODEL_WAREHOUSE
- GS_OPT_MODEL
- GS_PACKAGE
- GS_POLICY_LABEL
- GS_RECYCLEBIN
- GS_TXN_SNAPSHOT
- GS_UID
- GS_WLM_EC_OPERATOR_INFO
- GS_WLM_INSTANCE_HISTORY
- GS_WLM_OPERATOR_INFO
- GS_WLM_PLAN_ENCODING_TABLE
- GS_WLM_PLAN_OPERATOR_INFO
- GS_WLM_SESSION_QUERY_INFO_ALL
- GS_WLM_USER_RESOURCE_HISTORY
- PG_AGGREGATE
- PG_AM
- PG_AMOP
- PG_AMPROC
- PG_APP_WORKLOADGROUP_MAPPING
- PG_ATTRDEF
- PG_ATTRIBUTE
- PG_AUTH_HISTORY
- PG_AUTH_MEMBERS
- PG_AUTHID
- PG_CAST
- PG_CLASS
- PG_COLLATION
- PG_CONSTRAINT
- PG_CONVERSION
- PG_DATABASE
- PG_DB_ROLE_SETTING
- PG_DEFAULT_ACL
- PG_DEPEND
- PG_DESCRIPTION
- PG_DIRECTORY
- PG_ENUM
- PG_EXTENSION
- PG_EXTENSION_DATA_SOURCE
- PG_FOREIGN_DATA_WRAPPER
- PG_FOREIGN_SERVER
- PG_FOREIGN_TABLE
- PG_HASHBUCKET
- PG_INDEX
- PG_INHERITS
- PG_JOB
- PG_JOB_PROC
- PG_LANGUAGE
- PG_LARGEOBJECT
- PG_LARGEOBJECT_METADATA
- PG_NAMESPACE
- PG_OBJECT
- PG_OPCLASS
- PG_OPERATOR
- PG_OPFAMILY
- PG_PARTITION
- PG_PLTEMPLATE
- PG_PROC
- PG_PUBLICATION
- PG_PUBLICATION_REL
- PG_RANGE
- PG_REPLICATION_ORIGIN
- PG_RESOURCE_POOL
- PG_REWRITE
- PG_RLSPOLICY
- PG_SECLABEL
- PG_SET
- PG_SHDEPEND
- PG_SHDESCRIPTION
- PG_SHSECLABEL
- PG_STATISTIC
- PG_STATISTIC_EXT
- PG_SUBSCRIPTION
- PG_SYNONYM
- PG_TABLESPACE
- PG_TRIGGER
- PG_TS_CONFIG
- PG_TS_CONFIG_MAP
- PG_TS_DICT
- PG_TS_PARSER
- PG_TS_TEMPLATE
- PG_TYPE
- PG_USER_MAPPING
- PG_USER_STATUS
- PG_WORKLOAD_GROUP
- PGXC_CLASS
- PGXC_GROUP
- PGXC_NODE
- PGXC_SLICE
- PLAN_TABLE_DATA
- STATEMENT_HISTORY
- System Views
- DV_SESSION_LONGOPS
- DV_SESSIONS
- GET_GLOBAL_PREPARED_XACTS(Discarded)
- GS_AUDITING
- GS_AUDITING_ACCESS
- GS_AUDITING_PRIVILEGE
- GS_ASYNC_SUBMIT_SESSIONS_STATUS
- GS_CLUSTER_RESOURCE_INFO
- GS_COMPRESSION
- GS_DB_PRIVILEGES
- GS_FILE_STAT
- GS_GSC_MEMORY_DETAIL
- GS_INSTANCE_TIME
- GS_LABELS
- GS_LSC_MEMORY_DETAIL
- GS_MASKING
- GS_MATVIEWS
- GS_OS_RUN_INFO
- GS_REDO_STAT
- GS_SESSION_CPU_STATISTICS
- GS_SESSION_MEMORY
- GS_SESSION_MEMORY_CONTEXT
- GS_SESSION_MEMORY_DETAIL
- GS_SESSION_MEMORY_STATISTICS
- GS_SESSION_STAT
- GS_SESSION_TIME
- GS_SQL_COUNT
- GS_STAT_SESSION_CU
- GS_THREAD_MEMORY_CONTEXT
- GS_TOTAL_MEMORY_DETAIL
- GS_WLM_CGROUP_INFO
- GS_WLM_EC_OPERATOR_STATISTICS
- GS_WLM_OPERATOR_HISTORY
- GS_WLM_OPERATOR_STATISTICS
- GS_WLM_PLAN_OPERATOR_HISTORY
- GS_WLM_REBUILD_USER_RESOURCE_POOL
- GS_WLM_RESOURCE_POOL
- GS_WLM_SESSION_HISTORY
- GS_WLM_SESSION_INFO
- GS_WLM_SESSION_INFO_ALL
- GS_WLM_SESSION_STATISTICS
- GS_WLM_USER_INFO
- GS_WRITE_TERM_LOG
- MPP_TABLES
- PG_AVAILABLE_EXTENSION_VERSIONS
- PG_AVAILABLE_EXTENSIONS
- PG_COMM_DELAY
- PG_COMM_RECV_STREAM
- PG_COMM_SEND_STREAM
- PG_COMM_STATUS
- PG_CONTROL_GROUP_CONFIG
- PG_CURSORS
- PG_EXT_STATS
- PG_GET_INVALID_BACKENDS
- PG_GET_SENDERS_CATCHUP_TIME
- PG_GROUP
- PG_GTT_ATTACHED_PIDS
- PG_GTT_RELSTATS
- PG_GTT_STATS
- PG_INDEXES
- PG_LOCKS
- PG_NODE_ENV
- PG_OS_THREADS
- PG_PREPARED_STATEMENTS
- PG_PREPARED_XACTS
- PG_PUBLICATION_TABLES
- PG_REPLICATION_ORIGIN_STATUS
- PG_REPLICATION_SLOTS
- PG_RLSPOLICIES
- PG_ROLES
- PG_RULES
- PG_RUNNING_XACTS
- PG_SECLABELS
- PG_SESSION_IOSTAT
- PG_SESSION_WLMSTAT
- PG_SETTINGS
- PG_SHADOW
- PG_STAT_ACTIVITY
- PG_STAT_ACTIVITY_NG
- PG_STAT_ALL_INDEXES
- PG_STAT_ALL_TABLES
- PG_STAT_BAD_BLOCK
- PG_STAT_BGWRITER
- PG_STAT_DATABASE
- PG_STAT_DATABASE_CONFLICTS
- PG_STAT_REPLICATION
- PG_STAT_SUBSCRIPTION
- PG_STAT_SYS_INDEXES
- PG_STAT_SYS_TABLES
- PG_STAT_USER_FUNCTIONS
- PG_STAT_USER_INDEXES
- PG_STAT_USER_TABLES
- PG_STAT_XACT_ALL_TABLES
- PG_STAT_XACT_SYS_TABLES
- PG_STAT_XACT_USER_FUNCTIONS
- PG_STAT_XACT_USER_TABLES
- PG_STATIO_ALL_INDEXES
- PG_STATIO_ALL_SEQUENCES
- PG_STATIO_ALL_TABLES
- PG_STATIO_SYS_INDEXES
- PG_STATIO_SYS_SEQUENCES
- PG_STATIO_SYS_TABLES
- PG_STATIO_USER_INDEXES
- PG_STATIO_USER_SEQUENCES
- PG_STATIO_USER_TABLES
- PG_STATS
- PG_TABLES
- PG_TDE_INFO
- PG_THREAD_WAIT_STATUS
- PG_TIMEZONE_ABBREVS
- PG_TIMEZONE_NAMES
- PG_TOTAL_MEMORY_DETAIL
- PG_TOTAL_USER_RESOURCE_INFO
- PG_TOTAL_USER_RESOURCE_INFO_OID
- PG_USER
- PG_USER_MAPPINGS
- PG_VARIABLE_INFO
- PG_VIEWS
- PG_WLM_STATISTICS
- PGXC_PREPARED_XACTS
- PLAN_TABLE
- Functions and Operators
- Logical Operators
- Comparison Operators
- Character Processing Functions and Operators
- Binary String Functions and Operators
- Bit String Functions and Operators
- Mode Matching Operators
- Mathematical Functions and Operators
- Date and Time Processing Functions and Operators
- Type Conversion Functions
- Geometric Functions and Operators
- Network Address Functions and Operators
- Text Search Functions and Operators
- JSON/JSONB Functions and Operators
- HLL Functions and Operators
- SEQUENCE Functions
- Array Functions and Operators
- Range Functions and Operators
- Aggregate Functions
- Window Functions(Analysis Functions)
- Security Functions
- Ledger Database Functions
- Encrypted Equality Functions
- Set Returning Functions
- Conditional Expression Functions
- System Information Functions
- System Administration Functions
- Configuration Settings Functions
- Universal File Access Functions
- Server Signal Functions
- Backup and Restoration Control Functions
- Snapshot Synchronization Functions
- Database Object Functions
- Advisory Lock Functions
- Logical Replication Functions
- Segment-Page Storage Functions
- Other Functions
- Undo System Functions
- Row-Store Compression System Functions
- Statistics Information Functions
- Trigger Functions
- Hash Function
- Prompt Message Function
- Global Temporary Table Functions
- Fault Injection System Function
- AI Feature Functions
- Dynamic Data Masking Functions
- Other System Functions
- Internal Functions
- Global SysCache Feature Functions
- Data Damage Detection and Repair Functions
- Obsolete Functions
- Supported Data Types
- Numeric Types
- Monetary Types
- Boolean Types
- Enumerated Types
- Character Types
- Binary Types
- Date/Time Types
- Geometric
- Network Address Types
- Bit String Types
- Text Search Types
- UUID
- JSON/JSONB Types
- HLL
- Array Types
- Range
- OID Types
- Pseudo-Types
- Data Types Supported by Column-store Tables
- XML Types
- Data Type Used by the Ledger Database
- SET Type
- SQL Syntax
- ABORT
- ALTER AGGREGATE
- ALTER AUDIT POLICY
- ALTER DATABASE
- ALTER DATA SOURCE
- ALTER DEFAULT PRIVILEGES
- ALTER DIRECTORY
- ALTER EXTENSION
- ALTER FOREIGN TABLE
- ALTER FUNCTION
- ALTER GLOBAL CONFIGURATION
- ALTER GROUP
- ALTER INDEX
- ALTER LANGUAGE
- ALTER LARGE OBJECT
- ALTER MASKING POLICY
- ALTER MATERIALIZED VIEW
- ALTER PACKAGE
- ALTER PROCEDURE
- ALTER PUBLICATION
- ALTER RESOURCE LABEL
- ALTER RESOURCE POOL
- ALTER ROLE
- ALTER ROW LEVEL SECURITY POLICY
- ALTER RULE
- ALTER SCHEMA
- ALTER SEQUENCE
- ALTER SERVER
- ALTER SESSION
- ALTER SUBSCRIPTION
- ALTER SYNONYM
- ALTER SYSTEM KILL SESSION
- ALTER SYSTEM SET
- ALTER TABLE
- ALTER TABLE PARTITION
- ALTER TABLE SUBPARTITION
- ALTER TABLESPACE
- ALTER TEXT SEARCH CONFIGURATION
- ALTER TEXT SEARCH DICTIONARY
- ALTER TRIGGER
- ALTER TYPE
- ALTER USER
- ALTER USER MAPPING
- ALTER VIEW
- ANALYZE | ANALYSE
- BEGIN
- CALL
- CHECKPOINT
- CLEAN CONNECTION
- CLOSE
- CLUSTER
- COMMENT
- COMMIT | END
- COMMIT PREPARED
- CONNECT BY
- COPY
- CREATE AGGREGATE
- CREATE AUDIT POLICY
- CREATE CAST
- CREATE CLIENT MASTER KEY
- CREATE COLUMN ENCRYPTION KEY
- CREATE DATABASE
- CREATE DATA SOURCE
- CREATE DIRECTORY
- CREATE EXTENSION
- CREATE FOREIGN TABLE
- CREATE FUNCTION
- CREATE GROUP
- CREATE INCREMENTAL MATERIALIZED VIEW
- CREATE INDEX
- CREATE LANGUAGE
- CREATE MASKING POLICY
- CREATE MATERIALIZED VIEW
- CREATE MODEL
- CREATE OPERATOR
- CREATE PACKAGE
- CREATE PROCEDURE
- CREATE PUBLICATION
- CREATE RESOURCE LABEL
- CREATE RESOURCE POOL
- CREATE ROLE
- CREATE ROW LEVEL SECURITY POLICY
- CREATE RULE
- CREATE SCHEMA
- CREATE SEQUENCE
- CREATE SERVER
- CREATE SUBSCRIPTION
- CREATE SYNONYM
- CREATE TABLE
- CREATE TABLE AS
- CREATE TABLE PARTITION
- CREATE TABLE SUBPARTITION
- CREATE TABLESPACE
- CREATE TEXT SEARCH CONFIGURATION
- CREATE TEXT SEARCH DICTIONARY
- CREATE TRIGGER
- CREATE TYPE
- CREATE USER
- CREATE USER MAPPING
- CREATE VIEW
- CREATE WEAK PASSWORD DICTIONARY
- CURSOR
- DEALLOCATE
- DECLARE
- DELETE
- DO
- DROP AGGREGATE
- DROP AUDIT POLICY
- DROP CAST
- DROP CLIENT MASTER KEY
- DROP COLUMN ENCRYPTION KEY
- DROP DATABASE
- DROP DATA SOURCE
- DROP DIRECTORY
- DROP EXTENSION
- DROP FOREIGN TABLE
- DROP FUNCTION
- DROP GLOBAL CONFIGURATION
- DROP GROUP
- DROP INDEX
- DROP LANGUAGE
- DROP MASKING POLICY
- DROP MATERIALIZED VIEW
- DROP MODEL
- DROP OPERATOR
- DROP OWNED
- DROP PACKAGE
- DROP PROCEDURE
- DROP PUBLICATION
- DROP RESOURCE LABEL
- DROP RESOURCE POOL
- DROP ROLE
- DROP ROW LEVEL SECURITY POLICY
- DROP RULE
- DROP SCHEMA
- DROP SEQUENCE
- DROP SERVER
- DROP SUBSCRIPTION
- DROP SYNONYM
- DROP TABLE
- DROP TABLESPACE
- DROP TEXT SEARCH CONFIGURATION
- DROP TEXT SEARCH DICTIONARY
- DROP TRIGGER
- DROP TYPE
- DROP USER
- DROP USER MAPPING
- DROP VIEW
- DROP WEAK PASSWORD DICTIONARY
- EXECUTE
- EXECUTE DIRECT
- EXPLAIN
- EXPLAIN PLAN
- FETCH
- GRANT
- INSERT
- LOCK
- MERGE INTO
- MOVE
- PREDICT BY
- PREPARE
- PREPARE TRANSACTION
- PURGE
- REASSIGN OWNED
- REFRESH INCREMENTAL MATERIALIZED VIEW
- REFRESH MATERIALIZED VIEW
- REINDEX
- RELEASE SAVEPOINT
- RESET
- REVOKE
- ROLLBACK
- ROLLBACK PREPARED
- ROLLBACK TO SAVEPOINT
- SAVEPOINT
- SELECT
- SELECT INTO
- SET
- SET CONSTRAINTS
- SET ROLE
- SET SESSION AUTHORIZATION
- SET TRANSACTION
- SHOW
- SHUTDOWN
- SNAPSHOT
- START TRANSACTION
- TIMECAPSULE TABLE
- TRUNCATE
- UPDATE
- VACUUM
- VALUES
- SHRINK
- SQL Reference
- MogDB SQL
- Keywords
- Constant and Macro
- Expressions
- Type Conversion
- Full Text Search
- Introduction
- Tables and Indexes
- Controlling Text Search
- Additional Features
- Parser
- Dictionaries
- Configuration Examples
- Testing and Debugging Text Search
- Limitations
- System Operation
- Controlling Transactions
- DDL Syntax Overview
- DML Syntax Overview
- DCL Syntax Overview
- Appendix
- GUC Parameters
- GUC Parameter Usage
- GUC Parameter List
- File Location
- Connection and Authentication
- Resource Consumption
- Write Ahead Log
- HA Replication
- Memory Table
- Query Planning
- Error Reporting and Logging
- Alarm Detection
- Statistics During the Database Running
- Load Management
- Automatic Vacuuming
- Default Settings of Client Connection
- Lock Management
- Version and Platform Compatibility
- Faut Tolerance
- Connection Pool Parameters
- MogDB Transaction
- Replication Parameters of Two Database Instances
- Developer Options
- Auditing
- CM Parameters
- Upgrade Parameters
- Miscellaneous Parameters
- Wait Events
- Query
- System Performance Snapshot
- Security Configuration
- Global Temporary Table
- HyperLogLog
- Scheduled Task
- Thread Pool
- User-defined Functions
- Backup and Restoration
- Undo
- DCF Parameters Settings
- Flashback
- Rollback Parameters
- Reserved Parameters
- AI Features
- Global SysCache Parameters
- Parameters Related to Efficient Data Compression Algorithms
- Appendix
- Schema
- Overview
- Information Schema
- DBE_PERF
- Overview
- OS
- Instance
- Memory
- File
- Object
- STAT_USER_TABLES
- SUMMARY_STAT_USER_TABLES
- GLOBAL_STAT_USER_TABLES
- STAT_USER_INDEXES
- SUMMARY_STAT_USER_INDEXES
- GLOBAL_STAT_USER_INDEXES
- STAT_SYS_TABLES
- SUMMARY_STAT_SYS_TABLES
- GLOBAL_STAT_SYS_TABLES
- STAT_SYS_INDEXES
- SUMMARY_STAT_SYS_INDEXES
- GLOBAL_STAT_SYS_INDEXES
- STAT_ALL_TABLES
- SUMMARY_STAT_ALL_TABLES
- GLOBAL_STAT_ALL_TABLES
- STAT_ALL_INDEXES
- SUMMARY_STAT_ALL_INDEXES
- GLOBAL_STAT_ALL_INDEXES
- STAT_DATABASE
- SUMMARY_STAT_DATABASE
- GLOBAL_STAT_DATABASE
- STAT_DATABASE_CONFLICTS
- SUMMARY_STAT_DATABASE_CONFLICTS
- GLOBAL_STAT_DATABASE_CONFLICTS
- STAT_XACT_ALL_TABLES
- SUMMARY_STAT_XACT_ALL_TABLES
- GLOBAL_STAT_XACT_ALL_TABLES
- STAT_XACT_SYS_TABLES
- SUMMARY_STAT_XACT_SYS_TABLES
- GLOBAL_STAT_XACT_SYS_TABLES
- STAT_XACT_USER_TABLES
- SUMMARY_STAT_XACT_USER_TABLES
- GLOBAL_STAT_XACT_USER_TABLES
- STAT_XACT_USER_FUNCTIONS
- SUMMARY_STAT_XACT_USER_FUNCTIONS
- GLOBAL_STAT_XACT_USER_FUNCTIONS
- STAT_BAD_BLOCK
- SUMMARY_STAT_BAD_BLOCK
- GLOBAL_STAT_BAD_BLOCK
- STAT_USER_FUNCTIONS
- SUMMARY_STAT_USER_FUNCTIONS
- GLOBAL_STAT_USER_FUNCTIONS
- Workload
- Session/Thread
- SESSION_STAT
- GLOBAL_SESSION_STAT
- SESSION_TIME
- GLOBAL_SESSION_TIME
- SESSION_MEMORY
- GLOBAL_SESSION_MEMORY
- SESSION_MEMORY_DETAIL
- GLOBAL_SESSION_MEMORY_DETAIL
- SESSION_STAT_ACTIVITY
- GLOBAL_SESSION_STAT_ACTIVITY
- THREAD_WAIT_STATUS
- GLOBAL_THREAD_WAIT_STATUS
- LOCAL_THREADPOOL_STATUS
- GLOBAL_THREADPOOL_STATUS
- SESSION_CPU_RUNTIME
- SESSION_MEMORY_RUNTIME
- STATEMENT_IOSTAT_COMPLEX_RUNTIME
- LOCAL_ACTIVE_SESSION
- Transaction
- Query
- STATEMENT
- SUMMARY_STATEMENT
- STATEMENT_COUNT
- GLOBAL_STATEMENT_COUNT
- SUMMARY_STATEMENT_COUNT
- GLOBAL_STATEMENT_COMPLEX_HISTORY
- GLOBAL_STATEMENT_COMPLEX_HISTORY_TABLE
- GLOBAL_STATEMENT_COMPLEX_RUNTIME
- STATEMENT_RESPONSETIME_PERCENTILE
- STATEMENT_COMPLEX_RUNTIME
- STATEMENT_COMPLEX_HISTORY_TABLE
- STATEMENT_COMPLEX_HISTORY
- STATEMENT_WLMSTAT_COMPLEX_RUNTIME
- STATEMENT_HISTORY
- Cache/IO
- STATIO_USER_TABLES
- SUMMARY_STATIO_USER_TABLES
- GLOBAL_STATIO_USER_TABLES
- STATIO_USER_INDEXES
- SUMMARY_STATIO_USER_INDEXES
- GLOBAL_STATIO_USER_INDEXES
- STATIO_USER_SEQUENCES
- SUMMARY_STATIO_USER_SEQUENCES
- GLOBAL_STATIO_USER_SEQUENCES
- STATIO_SYS_TABLES
- SUMMARY_STATIO_SYS_TABLES
- GLOBAL_STATIO_SYS_TABLES
- STATIO_SYS_INDEXES
- SUMMARY_STATIO_SYS_INDEXES
- GLOBAL_STATIO_SYS_INDEXES
- STATIO_SYS_SEQUENCES
- SUMMARY_STATIO_SYS_SEQUENCES
- GLOBAL_STATIO_SYS_SEQUENCES
- STATIO_ALL_TABLES
- SUMMARY_STATIO_ALL_TABLES
- GLOBAL_STATIO_ALL_TABLES
- STATIO_ALL_INDEXES
- SUMMARY_STATIO_ALL_INDEXES
- GLOBAL_STATIO_ALL_INDEXES
- STATIO_ALL_SEQUENCES
- SUMMARY_STATIO_ALL_SEQUENCES
- GLOBAL_STATIO_ALL_SEQUENCES
- GLOBAL_STAT_DB_CU
- GLOBAL_STAT_SESSION_CU
- Utility
- REPLICATION_STAT
- GLOBAL_REPLICATION_STAT
- REPLICATION_SLOTS
- GLOBAL_REPLICATION_SLOTS
- BGWRITER_STAT
- GLOBAL_BGWRITER_STAT
- GLOBAL_CKPT_STATUS
- GLOBAL_DOUBLE_WRITE_STATUS
- GLOBAL_PAGEWRITER_STATUS
- GLOBAL_RECORD_RESET_TIME
- GLOBAL_REDO_STATUS
- GLOBAL_RECOVERY_STATUS
- CLASS_VITAL_INFO
- USER_LOGIN
- SUMMARY_USER_LOGIN
- GLOBAL_GET_BGWRITER_STATUS
- GLOBAL_SINGLE_FLUSH_DW_STATUS
- GLOBAL_CANDIDATE_STATUS
- Lock
- Wait Events
- Configuration
- Operator
- Workload Manager
- Global Plancache
- RTO
- DBE_PLDEBUGGER Schema
- Overview
- DBE_PLDEBUGGER.turn_on
- DBE_PLDEBUGGER.turn_off
- DBE_PLDEBUGGER.local_debug_server_info
- DBE_PLDEBUGGER.attach
- DBE_PLDEBUGGER.info_locals
- DBE_PLDEBUGGER.next
- DBE_PLDEBUGGER.continue
- DBE_PLDEBUGGER.abort
- DBE_PLDEBUGGER.print_var
- DBE_PLDEBUGGER.info_code
- DBE_PLDEBUGGER.step
- DBE_PLDEBUGGER.add_breakpoint
- DBE_PLDEBUGGER.delete_breakpoint
- DBE_PLDEBUGGER.info_breakpoints
- DBE_PLDEBUGGER.backtrace
- DBE_PLDEBUGGER.disable_breakpoint
- DBE_PLDEBUGGER.enable_breakpoint
- DBE_PLDEBUGGER.finish
- DBE_PLDEBUGGER.set_var
- DB4AI Schema
- DBE_PLDEVELOPER
- Tool Reference
- Tool Overview
- Client Tool
- Server Tools
- Tools Used in the Internal System
- Unified Database Management Tool
- FAQ
- Functions of MogDB Executable Scripts
- System Catalogs and Views Supported by gs_collector
- Error Code Reference
- Description of SQL Error Codes
- Third-Party Library Error Codes
- GAUSS-00001 - GAUSS-00100
- GAUSS-00101 - GAUSS-00200
- GAUSS 00201 - GAUSS 00300
- GAUSS 00301 - GAUSS 00400
- GAUSS 00401 - GAUSS 00500
- GAUSS 00501 - GAUSS 00600
- GAUSS 00601 - GAUSS 00700
- GAUSS 00701 - GAUSS 00800
- GAUSS 00801 - GAUSS 00900
- GAUSS 00901 - GAUSS 01000
- GAUSS 01001 - GAUSS 01100
- GAUSS 01101 - GAUSS 01200
- GAUSS 01201 - GAUSS 01300
- GAUSS 01301 - GAUSS 01400
- GAUSS 01401 - GAUSS 01500
- GAUSS 01501 - GAUSS 01600
- GAUSS 01601 - GAUSS 01700
- GAUSS 01701 - GAUSS 01800
- GAUSS 01801 - GAUSS 01900
- GAUSS 01901 - GAUSS 02000
- GAUSS 02001 - GAUSS 02100
- GAUSS 02101 - GAUSS 02200
- GAUSS 02201 - GAUSS 02300
- GAUSS 02301 - GAUSS 02400
- GAUSS 02401 - GAUSS 02500
- GAUSS 02501 - GAUSS 02600
- GAUSS 02601 - GAUSS 02700
- GAUSS 02701 - GAUSS 02800
- GAUSS 02801 - GAUSS 02900
- GAUSS 02901 - GAUSS 03000
- GAUSS 03001 - GAUSS 03100
- GAUSS 03101 - GAUSS 03200
- GAUSS 03201 - GAUSS 03300
- GAUSS 03301 - GAUSS 03400
- GAUSS 03401 - GAUSS 03500
- GAUSS 03501 - GAUSS 03600
- GAUSS 03601 - GAUSS 03700
- GAUSS 03701 - GAUSS 03800
- GAUSS 03801 - GAUSS 03900
- GAUSS 03901 - GAUSS 04000
- GAUSS 04001 - GAUSS 04100
- GAUSS 04101 - GAUSS 04200
- GAUSS 04201 - GAUSS 04300
- GAUSS 04301 - GAUSS 04400
- GAUSS 04401 - GAUSS 04500
- GAUSS 04501 - GAUSS 04600
- GAUSS 04601 - GAUSS 04700
- GAUSS 04701 - GAUSS 04800
- GAUSS 04801 - GAUSS 04900
- GAUSS 04901 - GAUSS 05000
- GAUSS 05001 - GAUSS 05100
- GAUSS 05101 - GAUSS 05200
- GAUSS 05201 - GAUSS 05300
- GAUSS 05301 - GAUSS 05400
- GAUSS 05401 - GAUSS 05500
- GAUSS 05501 - GAUSS 05600
- GAUSS 05601 - GAUSS 05700
- GAUSS 05701 - GAUSS 05800
- GAUSS 05801 - GAUSS 05900
- GAUSS 05901 - GAUSS 06000
- GAUSS 06001 - GAUSS 06100
- GAUSS 06101 - GAUSS 06200
- GAUSS 06201 - GAUSS 06300
- GAUSS 06301 - GAUSS 06400
- GAUSS 06401 - GAUSS 06500
- GAUSS 06501 - GAUSS 06600
- GAUSS 06601 - GAUSS 06700
- GAUSS 06701 - GAUSS 06800
- GAUSS 06801 - GAUSS 06900
- GAUSS 06901 - GAUSS 07000
- GAUSS 07001 - GAUSS 07100
- GAUSS 07101 - GAUSS 07200
- GAUSS 07201 - GAUSS 07300
- GAUSS 07301 - GAUSS 07400
- GAUSS 07401 - GAUSS 07480
- GAUSS 50000 - GAUSS 50999
- GAUSS 51000 - GAUSS 51999
- GAUSS 52000 - GAUSS 52999
- GAUSS 53000 - GAUSS 53799
- Error Log Reference
- System Catalogs and System Views
- Common Faults and Identification
- Common Fault Locating Methods
- Common Fault Locating Cases
- Core Fault Locating
- Permission/Session/Data Type Fault Location
- Service/High Availability/Concurrency Fault Location
- Standby Node in the Need Repair (WAL) State
- Service Startup Failure
- Primary Node Is Hung in Demoting During a Switchover
- "too many clients already" Is Reported or Threads Failed To Be Created in High Concurrency Scenarios
- Performance Deterioration Caused by Dirty Page Flushing Efficiency During TPCC High Concurrentcy Long Term Stable Running
- Table/Partition Table Fault Location
- File System/Disk/Memory Fault Location
- After You Run the du Command to Query Data File Size In the XFS File System, the Query Result Is Greater than the Actual File Size
- File Is Damaged in the XFS File System
- Insufficient Memory
- "Error:No space left on device" Is Displayed
- When the TPC-C is running and a disk to be injected is full, the TPC-C stops responding
- Disk Space Usage Reaches the Threshold and the Database Becomes Read-only
- SQL Fault Location
- Index Fault Location
- CM Two-Node Fault Location
- Source Code Parsing
- FAQs
- Glossary
- Communication Matrix
- Mogeaver
Native DB4AI Engine
The current version of openGauss supports the native DB4AI capability. By introducing native AI operators, openGauss simplifies the operation process and fully utilizes the optimization and execution capabilities of the database optimizer and executor to obtain the high-performance model training capability in the database. With a simpler model training and prediction process and higher performance, developers can focus on model tuning and data analysis in a shorter period of time, avoiding fragmented technology stacks and redundant code implementation.
Keyword Parsing
Table 1 DB4AI syntax and keywords
Name | Description | |
---|---|---|
Syntax | CREATE MODEL | Creates a model, trains it, and saves the model. |
PREDICT BY | Uses an existing model for prediction. | |
DROP MODEL | Deletes a model. | |
Keyword | TARGET | Target column name of a training or prediction task. |
FEATURES | Data feature column name of a training or prediction task. | |
MODEL | Model name of a training task. |
Usage Guide
-
Introduce the algorithms supported in this version.
The DB4AI of the current version supports the following new algorithms:
Table 2 Supported algorithms
Optimization Algorithm Algorithm GD logistic_regression linear_regression svm_classification PCA multiclass Kmeans kmeans xgboost xgboost_regression_logistic xgboost_binary_logistic xgboost_regression_squarederror xgboost_regression_gamma -
Learn about the model training syntax.
-
CREATE MODEL
You can run the CREATE MODEL statement to create and train a model. This SQL statement uses the public Iris dataset for model training.
-
The following uses multiclass as an example to describe how to train a model. Specify sepal_length, sepal_width, petal_length, and petal_width as feature columns in the tb_iris training set, and use the multiclass algorithm to create and save the iris_classification_model model.
MogDB=# CREATE MODEL iris_classification_model USING xgboost_regression_logistic FEATURES sepal_length, sepal_width,petal_length,petal_width TARGET target_type < 2 FROM tb_iris_1 WITH nthread=4, max_depth=8; MODEL CREATED. PROCESSED 1
In the preceding command:
- The CREATE MODEL statement is used to train and save a model.
- USING specifies the algorithm name.
- FEATURES specifies the features of the training model and needs to be added based on the column name of the training data table.
- TARGET specifies the training target of the model. It can be the column name of the data table required for training or an expression, for example, price > 10000.
- WITH specifies the hyperparameters used for model training. When the hyperparameter is not set by the user, the framework uses the default value.
The framework supports various hyperparameter combinations for different operators.
Table 3 Hyperparameters supported by operators
Operator Hyperparameter GD
(logistic_regression、linear_regression、svm_classification)optimizer(char*), verbose(bool), max_iterations(int), max_seconds(double), batch_size(int), learning_rate(double), decay(double), and tolerance(double)* SVM limits the hyperparameter lambda(double). K-Means max_iterations(int), num_centroids(int), tolerance(double), batch_size(int), num_features(int), distance_function(char), seeding_function(char*), verbose(int), and seed(int)* GD(pca) batch_size(int);max_iterations(int);max_seconds(int);tolerance(float8);verbose(bool);number_components(int);seed(int) GD(multiclass) classifier(char)
Note: Other hyperparameter types of multiclass depend on the categories in the selected classifier.xgboost_regression_logistic、xgboost_binary_logistic、xgboost_regression_squarederror、xgboost_regression_gamma batch_size(int);booster(char);tree_method(char);eval_metric(char);seed(int);nthread(int);max_depth(int);gamma(float8);eta(float8);min_child_weight(int);verbosity(int) The default value and value range of each hyperparameter are as follows:
Table 4 Default values and value ranges of hyperparameters
Operator Default Hyperparameter Value Value Range Hyperparameter Description GD:logistic_regression、linear_regression、svm_classification、pca optimizer = gd (gradient descent) gd/ngd (natural gradient descent) Optimizer verbose = false T/F Log display max_iterations = 100 (0, 10000] Maximum iterations max_seconds = 0 (The running duration is not limited.) [0,INT_MAX_VALUE] Running duration batch_size = 1000 (0, 1048575] Number of data records selected per training learning_rate = 0.8 (0, DOUBLE_MAX_VALUE] Learning rate decay = 0.95 (0, DOUBLE_MAX_VALUE] Weight decay rate tolerance = 0.0005 (0, DOUBLE_MAX_VALUE] Tolerance seed = 0 (random value of seed) [0, INT_MAX_VALUE] Seed just for linear、SVM:kernel = “linear” linear/gaussian/polynomial Kernel function just for linear、SVM:components = MAX(2*features, 128) [0, INT_MAX_VALUE] Number of high-dimension space dimensions just for linear、SVM:gamma = 0.5 (0, DOUBLE_MAX_VALUE] Gaussian kernel function parameter just for linear、SVM:degree = 2 [2, 9] Polynomial kernel function parameter just for linear、SVM:coef0 = 1.0 [0, DOUBLE_MAX_VALUE] Polynomial kernel function parameter just for SVM:lambda = 0.01 (0, DOUBLE_MAX_VALUE) Regularization parameter just for pca: number_components (0,INT_MAX_VALUE] Target dimension after dimension reduction GD:multiclass classifier=“svm_classification” svm_classification\logistic_regression Classifier for multiclass tasks Kmeans max_iterations = 10 [1, 10000] Maximum iterations num_centroids = 10 [1, 1000000] Number of clusters tolerance = 0.00001 (0,1] Central point error batch_size = 10 [1,1048575] Number of data records selected per training num_features = 2 [1, INT_MAX_VALUE] Number of sample features distance_function = “L2_Squared” L1\L2\L2_Squared\Linf Regularization method seeding_function = “Random++” “Random++”\“KMeans Method for initializing seed points verbose = 0U { 0, 1, 2 } Verbose mode seed = 0U [0, INT_MAX_VALUE] Seed xgboost:
xgboost_regression_logistic、xgboost_binary_logistic、xgboost_regression_gamma、xgboost_regression_squarederrorn_iter=10 (0, 10000] Iteration times batch_size=10000 (0, 1048575] Number of data records selected per training booster=“gbtree” gbtree\gblinear\dart Booster type tree_method=“auto” auto\exact\approx\hist\gpu_hist
Note: To use the gpu_hist parameter, you must configure a GPU library. Otherwise, the DB4AI platform does not support this value.Tree construction algorithm eval_metric=“rmse” rmse\rmsle\map\mae\auc\aucpr Data verification metric seed=0 [0, 100] Seed nthread=1 (0, MAX_MEMORY_LIMIT] Concurrency max_depth=5 (0, MAX_MEMORY_LIMIT] Maximum depth of the tree. This parameter is valid only for the tree booster. gamma=0.0 [0, 1] Minimum loss required for further partitioning on leaf nodes eta=0.3 [0, 1] Step used in the update to prevent overfitting min_child_weight=1 [0, INT_MAX_VALUE] Minimum sum of instance weights required by child nodes verbosity=1 0 (silent)\1 (warning)\2 (info)\3 (debug) Printing level MAX_MEMORY_LIMIT = Maximum number of tuples loaded in memory GS_MAX_COLS = Maximum number of attributes in a database table -
If the model is saved successfully, the following information is returned:
MODEL CREATED. PROCESSED x
-
-
View the model information.
After the training is complete, the model is stored in the gs_model_warehouse system catalog. You can view information about the model and training process in the gs_model_warehouse system catalog.
The model details are stored in the system catalog in binary mode. You can use the gs_explain_model function to view the model details. The statement is as follows:
MogDB=# select * from gs_explain_model("iris_classification_model"); DB4AI MODEL ------------------------------------------------------------- Name: iris_classification_model Algorithm: xgboost_regression_logistic Query: CREATE MODEL iris_classification_model USING xgboost_regression_logistic FEATURES sepal_length, sepal_width,petal_length,petal_width TARGET target_type < 2 FROM tb_iris_1 WITH nthread=4, max_depth=8; Return type: Float64 Pre-processing time: 0.000000 Execution time: 0.001443 Processed tuples: 78 Discarded tuples: 0 n_iter: 10 batch_size: 10000 max_depth: 8 min_child_weight: 1 gamma: 0.0000000000 eta: 0.3000000000 nthread: 4 verbosity: 1 seed: 0 booster: gbtree tree_method: auto eval_metric: rmse rmse: 0.2648450136 model size: 4613
-
Use an existing model to perform a prediction task.
Use the SELECT and PREDICT BY keywords to complete the prediction task based on the existing model.
Query syntax: SELECT… PREDICT BY… (FEATURES…)… FROM…;
MogDB=# SELECT id, PREDICT BY iris_classification (FEATURES sepal_length,sepal_width,petal_length,petal_width) as "PREDICT" FROM tb_iris limit 3; id | PREDICT -----+--------- 84 | 2 85 | 0 86 | 0 (3 rows)
For the same prediction task, the results of the same model are stable. In addition, models trained based on the same hyperparameter and training set are stable. AI model training is random (random gradient descent of data distribution each batch). Therefore, the computing performance and results of different models can vary slightly.
-
View the execution plan.
You can use the EXPLAIN statement to analyze the execution plan in the model training or prediction process of CREATE MODEL and PREDICT BY. The keyword EXPLAIN can be followed by a CREATE MODEL or PREDICT BY clause or an optional parameter. The supported parameters are as follows:
Table 5 Parameters supported by EXPLAIN
Parameter Description ANALYZE Boolean variable, which is used to add description information such as the running time and number of loop times VERBOSE Boolean variable, which determines whether to output the training running information to the client COSTS Boolean variable CPU Boolean variable DETAIL Boolean variable, which is unavailable NODES Boolean variable, which is unavailable NUM_NODES Boolean variable, which is unavailable BUFFERS Boolean variable TIMING Boolean variable PLAN Boolean variable FORMAT Optional format type: TEXT, XML, JSON, and YAML Example:
MogDB=# Explain CREATE MODEL patient_logisitic_regression USING logistic_regression FEATURES second_attack, treatment TARGET trait_anxiety > 50 FROM patients WITH batch_size=10, learning_rate = 0.05; QUERY PLAN ------------------------------------------------------------------------- Train Model - logistic_regression (cost=0.00..0.00 rows=0 width=0) -> Materialize (cost=0.00..41.08 rows=1776 width=12) -> Seq Scan on patients (cost=0.00..32.20 rows=1776 width=12) (3 rows)
-
Perform troubleshooting in case of exceptions.
-
Training phase
-
Scenario 1: When the value of the hyperparameter exceeds the value range, the model training fails and an error message is returned. For example:
MogDB=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES second_attack,treatment TARGET trait_anxiety FROM patients WITH optimizer='aa'; ERROR: Invalid hyperparameter value for optimizer. Valid values are: gd, ngd.
-
Scenario 2: If the model name already exists, the model fails to be saved, and an error message with the cause is displayed. For example:
MogDB=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES second_attack,treatment TARGET trait_anxiety FROM patients; ERROR: The model name "patient_linear_regression" already exists in gs_model_warehouse.
-
Scenario 3: If the value in the FEATURE or TARGETS column is *****, an error message with the cause is displayed. For example:
MogDB=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES * TARGET trait_anxiety FROM patients; ERROR: FEATURES clause cannot be * ----------------------------------------------------------------------------------------------------------------------- MogDB=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES second_attack,treatment TARGET * FROM patients; ERROR: TARGET clause cannot be *
-
Scenario 4: If the keyword TARGET is used in the unsupervised learning method or is not applicable to the supervised learning method, an error message with the cause is displayed. For example:
MogDB=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES second_attack,treatment FROM patients; ERROR: Supervised ML algorithms require TARGET clause ----------------------------------------------------------------------------------------------------------------------------- CREATE MODEL patient_linear_regression USING linear_regression TARGET trait_anxiety FROM patients; ERROR: Supervised ML algorithms require FEATURES clause
-
Scenario 5: If there is only one category in the TARGET column, an error message with the cause is displayed. For example:
MogDB=# CREATE MODEL ecoli_svmc USING multiclass FEATURES f1, f2, f3, f4, f5, f6, f7 TARGET cat FROM (SELECT * FROM db4ai_ecoli WHERE cat='cp'); ERROR: At least two categories are needed
-
Scenario 6: DB4AI filters out data that contains null values during training. When the model data involved in training is null, an error message with the cause is displayed. For example:
MogDB=# create model iris_classification_model using xgboost_regression_logistic features message_regular target error_level from error_code; ERROR: Training data is empty, please check the input data.
-
Scenario 7: The DB4AI algorithm has restrictions on the supported data types. If the data type is not in the whitelist, an error message is returned and the invalid OID is displayed. You can check the OID in pg_type to determine the invalid data type. For example:
MogDB=# CREATE MODEL ecoli_svmc USING multiclass FEATURES f1, f2, f3, f4, f5, f6, f7, cat TARGET cat FROM db4ai_ecoli ; ERROR: Oid type 1043 not yet supported
-
Scenario 8: If the GUC parameter statement_timeout is set, the statement that is executed due to training timeout will be terminated. In this case, execute the CREATE MODEL statement. Parameters such as the size of the training set, number of training rounds (iteration), early termination conditions (tolerance and max_seconds), and number of parallel threads (nthread) affect the training duration. When the duration exceeds the database limit, the statement execution is terminated and model training fails.
-
-
Model parsing
-
Scenario 9: If the model name cannot be found in the system catalog, an error message with the cause is displayed. For example:
MogDB=# select gs_explain_model("ecoli_svmc"); ERROR: column "ecoli_svmc" does not exist
-
-
Prediction phase
-
Scenario 10: If the model name cannot be found in the system catalog, an error message with the cause is displayed. For example:
MogDB=# select id, PREDICT BY patient_logistic_regression (FEATURES second_attack,treatment) FROM patients; ERROR: There is no model called "patient_logistic_regression".
-
Scenario 11: If the data dimension and data type of the FEATURES task are inconsistent with those of the training set, an error message with the cause is displayed. For example:
MogDB=# select id, PREDICT BY patient_linear_regression (FEATURES second_attack) FROM patients; ERROR: Invalid number of features for prediction, provided 1, expected 2 CONTEXT: referenced column: patient_linear_regression_pred ------------------------------------------------------------------------------------------------------------------------------------- MogDB=# select id, PREDICT BY patient_linear_regression (FEATURES 1,second_attack,treatment) FROM patients; ERROR: Invalid number of features for prediction, provided 3, expected 2 CONTEXT: referenced column: patient_linear_regression_pre
-
-
NOTE: The DB4AI feature requires data access for computing and is not applicable to encrypted databases.